Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
ODF2L acts as a synthetic lethal partner with WEE1 inhibition in epithelial ovarian cancer models
Jie Li, … , Shuzhong Yao, Chaoyun Pan
Jie Li, … , Shuzhong Yao, Chaoyun Pan
Published November 15, 2022
Citation Information: J Clin Invest. 2023;133(2):e161544. https://doi.org/10.1172/JCI161544.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 5

ODF2L acts as a synthetic lethal partner with WEE1 inhibition in epithelial ovarian cancer models

  • Text
  • PDF
Abstract

WEE1 has emerged as an attractive target in epithelial ovarian cancer (EOC), but how EOC cells may alter their sensitivity to WEE1 inhibition remains unclear. Here, through a cell cycle machinery–related gene RNAi screen, we found that targeting outer dense fiber of sperm tails 2–like (ODF2L) was a synthetic lethal partner with WEE1 kinase inhibition in EOC cells. Knockdown of ODF2L robustly sensitized cells to treatment with the WEE1 inhibitor AZD1775 in EOC cell lines in vitro as well as in xenografts in vivo. Mechanistically, the increased sensitivity to WEE1 inhibition upon ODF2L loss was accompanied by accumulated DNA damage. ODF2L licensed the recruitment of PKMYT1, a functionally redundant kinase of WEE1, to the CDK1–cyclin B complex and thus restricted the activity of CDK1 when WEE1 was inhibited. Clinically, upregulation of ODF2L correlated with CDK1 activity, DNA damage levels, and sensitivity to WEE1 inhibition in patient-derived EOC cells. Moreover, ODF2L levels predicted the response to WEE1 inhibition in an EOC patient–derived xenograft model. Combination treatment with tumor-targeted lipid nanoparticles that packaged ODF2L siRNA and AZD1775 led to the synergistic attenuation of tumor growth in the ID8 ovarian cancer syngeneic mouse model. These data suggest that WEE1 inhibition is a promising precision therapeutic strategy for EOC cells expressing low levels of ODF2L.

Authors

Jie Li, Jingyi Lu, Manman Xu, Shiyu Yang, Tiantian Yu, Cuimiao Zheng, Xi Huang, Yuwen Pan, Yangyang Chen, Junming Long, Chunyu Zhang, Hua Huang, Qingyuan Dai, Bo Li, Wei Wang, Shuzhong Yao, Chaoyun Pan

×

Figure 3

ODF2L loss exacerbates DNA damage induced by WEE1 inhibition in EOC cells.

Options: View larger image (or click on image) Download as PowerPoint
ODF2L loss exacerbates DNA damage induced by WEE1 inhibition in EOC cell...
(A) Percentages of γH2AX+ cells in the indicated EOC cells (treatment: DMSO/200 nM AZD1775) determined by immunofluorescence staining at the indicated time points. (B) Representative images of the alkaline comet assay performed in the indicated EOC cells (treatment: DMSO/200 nM AZD1775, 48 hours). For each of the 3 independent experiments, approximately 100 individual cells from 3 random fields were scored for the proportion of DNA in the COMET “tail.” Scale bars: 100 μm. (C) Immunoblots of DSB checkpoint proteins in the indicated EOC cells (treatment: DMSO/200 nM AZD1775, 24 hours). (D) Flow cytometric analysis of DNA synthesis (EdU) and DNA content (Hoechst 33342) at the indicated time points. The percentages of cells with 1C < PI < 2C/EdU– were quantified. (E) Immunoblot analysis of γH2AX levels in cell lysates from the indicated populations of cells (lower panel). The cell populations were sorted by flow cytometry on the basis of cell cycle distribution (upper panel). Data are the mean ± SD from 3 technical replicates of each sample and are representative of 3 (A), 2 (B), 3 (C), 3 (D), and 2 (E) independent biological experiments. ****P < 0.0001, by 1-way ANOVA for all data.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 7 X users
11 readers on Mendeley
See more details