Catecholamines and α1-adrenergic receptors (α1-ARs) cause cardiac hypertrophy in cultured myocytes and transgenic mice, but heart size is normal in single KOs of the main α1-AR subtypes, α1A/C and α1B. Here we tested whether α1-ARs are required for developmental cardiac hypertrophy by generating α1A/C and α1B double KO (ABKO) mice, which had no cardiac α1-AR binding. In male ABKO mice, heart growth after weaning was 40% less than in WT, and the smaller heart was due to smaller myocytes. Body and other organ weights were unchanged, indicating a specific effect on the heart. Blood pressure in ABKO mice was the same as in WT, showing that the smaller heart was not due to decreased load. Contractile function was normal by echocardiography in awake mice, but the smaller heart and a slower heart rate reduced cardiac output. α1-AR stimulation did not activate extracellular signal–regulated kinase (Erk) and downstream kinases in ABKO myocytes, and basal Erk activity was lower in the intact ABKO heart. In female ABKO mice, heart size was normal, even after ovariectomy. Male ABKO mice had reduced exercise capacity and increased mortality with pressure overload. Thus, α1-ARs in male mice are required for the physiological hypertrophy of normal postnatal cardiac development and for an adaptive response to cardiac stress.
Timothy D. O’Connell, Shinji Ishizaka, Akihiro Nakamura, Philip M. Swigart, M.C. Rodrigo, Gregory L. Simpson, Susanna Cotecchia, D. Gregg Rokosh, William Grossman, Elyse Foster, Paul C. Simpson
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 423 | 60 |
66 | 30 | |
Figure | 231 | 12 |
Table | 114 | 0 |
Citation downloads | 49 | 0 |
Totals | 883 | 102 |
Total Views | 985 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.