Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mechanisms and treatments of neuropathic itch in a mouse model of lymphoma
Ouyang Chen, … , Madelynne Olexa, Ru-Rong Ji
Ouyang Chen, … , Madelynne Olexa, Ru-Rong Ji
Published December 15, 2022
Citation Information: J Clin Invest. 2023;133(4):e160807. https://doi.org/10.1172/JCI160807.
View: Text | PDF
Research Article Neuroscience Article has an altmetric score of 2

Mechanisms and treatments of neuropathic itch in a mouse model of lymphoma

  • Text
  • PDF
Abstract

Our understanding of neuropathic itch is limited due to a lack of relevant animal models. Patients with cutaneous T cell lymphoma (CTCL) experience severe itching. Here, we characterize a mouse model of chronic itch with remarkable lymphoma growth, immune cell accumulation, and persistent pruritus. Intradermal CTCL inoculation produced time-dependent changes in nerve innervations in lymphoma-bearing skin. In the early phase (20 days), CTCL caused hyperinnervations in the epidermis. However, chronic itch was associated with loss of epidermal nerve fibers in the late phases (40 and 60 days). CTCL was also characterized by marked nerve innervations in mouse lymphoma. Blockade of C-fibers reduced pruritus at early and late phases, whereas blockade of A-fibers only suppressed late-phase itch. Intrathecal (i.t.) gabapentin injection reduced late-phase, but not early-phase, pruritus. IL-31 was upregulated in mouse lymphoma, whereas its receptor Il31ra was persistently upregulated in Trpv1-expressing sensory neurons in mice with CTCL. Intratumoral anti–IL-31 treatment effectively suppressed CTCL-induced scratching and alloknesis (mechanical itch). Finally, i.t. administration of a TLR4 antagonist attenuated pruritus in early and late phases and in both sexes. Collectively, we have established a mouse model of neuropathic and cancer itch with relevance to human disease. Our findings also suggest distinct mechanisms underlying acute, chronic, and neuropathic itch.

Authors

Ouyang Chen, Qianru He, Qingjian Han, Kenta Furutani, Yun Gu, Madelynne Olexa, Ru-Rong Ji

×

Figure 7

A single intratumoral treatment with IL-31–neutralizing antibody reduces CTCL-induced pruritus.

Options: View larger image (or click on image) Download as PowerPoint
A single intratumoral treatment with IL-31–neutralizing antibody reduces...
(A) Number of scratching bouts in 1 hour. Compared with IgG control antibody, IL-31–neutralizing antibody significantly reduced scratching at 1 hour, 3 hours, 5 hours, and 24 hours. Two-way ANOVA, P < 0.0001, F(1, 78)= 162.9. (B) Alloknesis induced by von Frey filament. Compared with IgG control antibody, IL-31–neutralizing antibody significantly reduced CTCL-induced alloknesis at 1 hour and 3 hours. Two-way ANOVA; P < 0.0001, F(1, 72)= 40.09. n = 6 for control IgG treatment; n = 9 for IL-31 antibody treatment. Behavior was assessed on CTCL day 25. **P < 0.01 and ****P < 0.0001, by Bonferroni’s multiple-comparison test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 3 X users
13 readers on Mendeley
See more details