Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cellular sensors of feast and famine
Eric Ravussin
Eric Ravussin
Published June 15, 2002
Citation Information: J Clin Invest. 2002;109(12):1537-1540. https://doi.org/10.1172/JCI16045.
View: Text | PDF
Commentary

Cellular sensors of feast and famine

  • Text
  • PDF
Abstract

Authors

Eric Ravussin

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Two cellular fuel-sensing pathways. The hexosamine biosynthesis pathway ...
Two cellular fuel-sensing pathways. The hexosamine biosynthesis pathway and the malonyl Co-A system are proposed to modulate energy consumption by muscle and other tissues in response to changing levels of metabolic fuels. Following its entry into the cell via the glucose transport system, glucose is phosphorylated into glucose-6-phosphate (G-6-P), which is primarily utilized by the pathways of glycogen synthesis and glycolysis. Only 1–3% of the glucose entering the cells is diverted to glucosamine-6-phostate by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFAT) (blue arrows). The end product of this pathway, uridinediphosphoglucose-N-acetylglucosamine (UDP-GlcNAc) serves as substrate for virtually all glycosylation pathways in the cells. Glucosamine enters the pathway directly after the rate-limiting step of GFAT, therefore mimicking a signal of excess glucose or nutrient. The second fuel-sensing pathway is that of malonyl-CoA. Increased cytosolic citrate from both the Krebs cycle and beta-oxidation contribute to increased Acetyl-CoA. Acetyl-CoA is the precursor of malonyl-CoA, a conversion that involves acetyl-CoA carboxylase 2 (ACC2). The primary role of malonyl-CoA is to regulate the rate of fat oxidation via its allosteric inhibition of carnitine palmitoyl transferase (CPT1), the enzyme responsible for converting long-chain fatty acyl-CoA into long-chain acyl-carnitine. Because the availability of Acetyl-CoA and the activity of ACC2 can each influence the concentration of malonyl-CoA, both can alter the balance between fat storage and fat oxidation.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts