Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Inhibiting DNA methylation improves antitumor immunity in ovarian cancer
Katherine B. Chiappinelli, Stephen B. Baylin
Katherine B. Chiappinelli, Stephen B. Baylin
Published July 15, 2022
Citation Information: J Clin Invest. 2022;132(14):e160186. https://doi.org/10.1172/JCI160186.
View: Text | PDF
Commentary Article has an altmetric score of 4

Inhibiting DNA methylation improves antitumor immunity in ovarian cancer

  • Text
  • PDF
Abstract

Cancer cells resist the immune response in a process known as immune editing or immune evasion. Therapies that target the immune system have revolutionized cancer treatment; however, immunotherapies have been ineffective for the majority of ovarian cancer cases. In this issue of the JCI, Chen, Xie, et al. hypothesized that hypomethylating agent (HMA) treatment would induce antitumor immunity to sensitize patients with ovarian cancer to anti-PD-1 immunotherapy. The authors performed a phase II clinical trial to test the combination of guadecitabine, a second-generation HMA, along with pembrolizumab, an immune checkpoint inhibitor of PD-1. The trial included a group of 35 patients with platinum-resistant ovarian cancer. While the clinical benefit from the combined HMA plus immune checkpoint blockade regimen was lower than hoped, the correlate analyses gave important information about which patients with ovarian cancer may be more likely to respond to immune therapy.

Authors

Katherine B. Chiappinelli, Stephen B. Baylin

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 774 118
PDF 119 37
Citation downloads 73 0
Totals 966 155
Total Views 1,121

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 6 X users
27 readers on Mendeley
See more details