The molecular mechanisms underlying obesity-induced increases in β cell mass and the resulting β cell dysfunction need to be elucidated further. Our study revealed that GPR92, expressed in islet macrophages, is modulated by dietary interventions in metabolic tissues. Therefore, we aimed to define the role of GPR92 in islet inflammation by using a high-fat diet–induced (HFD-induced) obese mouse model. GPR92-KO mice exhibited glucose intolerance and reduced insulin levels — despite the enlarged pancreatic islets — as well as increased islet macrophage content and inflammation level compared with WT mice. These results indicate that the lack of GPR92 in islet macrophages can cause β cell dysfunction, leading to disrupted glucose homeostasis. Alternatively, stimulation with the GPR92 agonist farnesyl pyrophosphate results in the inhibition of HFD-induced islet inflammation and increased insulin secretion in WT mice, but not in GPR92-KO mice. Thus, our study suggests that GPR92 can be a potential target to alleviate β cell dysfunction via the inhibition of islet inflammation associated with the progression of diabetes.
Camila O. de Souza, Vivian A. Paschoal, Xuenan Sun, Lavanya Vishvanath, Qianbin Zhang, Mengle Shao, Toshiharu Onodera, Shiuhwei Chen, Nolwenn Joffin, Lorena M.A. Bueno, Rana K. Gupta, Da Young Oh
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 780 | 207 |
184 | 74 | |
Figure | 325 | 6 |
Supplemental data | 63 | 10 |
Citation downloads | 66 | 0 |
Totals | 1,418 | 297 |
Total Views | 1,715 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.