Bronchiolitis obliterans syndrome (BOS) is a major impediment to lung transplant survival and is generally resistant to medical therapy. Extracorporeal photophoresis (ECP) is an immunomodulatory therapy that shows promise in stabilizing BOS patients, but its mechanisms of action are unclear. In a mouse lung transplant model, we show that ECP blunts alloimmune responses and inhibits BOS through lowering airway TGF-β bioavailability without altering its expression. Surprisingly, ECP-treated leukocytes were primarily engulfed by alveolar macrophages (AMs), which were reprogrammed to become less responsive to TGF-β and reduce TGF-β bioavailability through secretion of the TGF-β antagonist decorin. In untreated recipients, high airway TGF-β activity stimulated AMs to express CCL2, leading to CCR2+ monocyte-driven BOS development. Moreover, we found TGF-β receptor 2–dependent differentiation of CCR2+ monocytes was required for the generation of monocyte-derived AMs, which in turn promoted BOS by expanding tissue-resident memory CD8+ T cells that inflicted airway injury through Blimp-1–mediated granzyme B expression. Thus, through studying the effects of ECP, we have identified an AM functional plasticity that controls a TGF-β–dependent network that couples CCR2+ monocyte recruitment and differentiation to alloimmunity and BOS.
Zhiyi Liu, Fuyi Liao, Jihong Zhu, Dequan Zhou, Gyu Seong Heo, Hannah P. Leuhmann, Davide Scozzi, Antanisha Parks, Ramsey Hachem, Derek E. Byers, Laneshia K. Tague, Hrishikesh S. Kulkarni, Marlene Cano, Brian W. Wong, Wenjun Li, Howard J. Huang, Alexander S. Krupnick, Daniel Kreisel, Yongjian Liu, Andrew E. Gelman
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,046 | 356 |
187 | 170 | |
Figure | 409 | 13 |
Supplemental data | 132 | 14 |
Citation downloads | 66 | 0 |
Totals | 1,840 | 553 |
Total Views | 2,393 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.