Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Breast cancer cell–derived microRNA-155 suppresses tumor progression via enhancing immune cell recruitment and antitumor function
Junfeng Wang, … , Guoshuai Cai, Daping Fan
Junfeng Wang, … , Guoshuai Cai, Daping Fan
Published August 4, 2022
Citation Information: J Clin Invest. 2022;132(19):e157248. https://doi.org/10.1172/JCI157248.
View: Text | PDF
Research Article Immunology Article has an altmetric score of 4

Breast cancer cell–derived microRNA-155 suppresses tumor progression via enhancing immune cell recruitment and antitumor function

  • Text
  • PDF
Abstract

Evidence suggests that increased microRNA-155 (miR-155) expression in immune cells enhances antitumor immune responses. However, given the reported association of miR-155 with tumorigenesis in various cancers, a debate is provoked on whether miR-155 is oncogenic or tumor suppressive. We aimed to interrogate the impact of tumor miR-155 expression, particularly that of cancer cell–derived miR-155, on antitumor immunity in breast cancer. We performed bioinformatic analysis of human breast cancer databases, murine experiments, and human specimen examination. We revealed that higher tumor miR-155 levels correlate with a favorable antitumor immune profile and better patient outcomes. Murine experiments demonstrated that miR-155 overexpression in breast cancer cells enhanced T cell influx, delayed tumor growth, and sensitized the tumors to immune checkpoint blockade (ICB) therapy. Mechanistically, miR-155 overexpression in breast cancer cells upregulated their CXCL9/10/11 production, which was mediated by SOCS1 inhibition and increased phosphorylated STAT1 (p-STAT1)/p-STAT3 ratios. We further found that serum miR-155 levels in breast cancer patients correlated with tumor miR-155 levels and tumor immune status. Our findings suggest that high serum and tumor miR-155 levels may be a favorable prognostic marker for breast cancer patients and that therapeutic elevation of miR-155 in breast tumors may improve the efficacy of ICB therapy via remodeling the antitumor immune landscape.

Authors

Junfeng Wang, Quanyi Wang, Yinan Guan, Yulu Sun, Xiaozhi Wang, Kaylie Lively, Yuzhen Wang, Ming Luo, Julian A. Kim, E. Angela Murphy, Yongzhong Yao, Guoshuai Cai, Daping Fan

×

Figure 3

miR-155 expression levels in breast tumors are positively correlated with antitumor immunity.

Options: View larger image (or click on image) Download as PowerPoint
miR-155 expression levels in breast tumors are positively correlated wit...
(A) Volcano plot for the DEGs in miR-155hi versus miR-155lo tumors. P adj, adjusted value. (B) Multi-GSEA analysis of immune-related gene signatures in miR-155hi versus miR-155lo tumors. (C) Box plots comparing T cell–associated gene expression between miR-155hi (n = 497) and miR-155lo (n = 498) tumors. (D) Correlations of normalized miR-155 expression with predicted immune cell fractions in breast cancer tumors. n = 995. (E) Representative H&E staining and computational staining images of breast cancer tumors from TCGA, which were retrieved from the CANCER Digital Slide Archive and TCIA, respectively. Normalized miR-155 expression and TIL percentage values are shown above corresponding images. (F) Quantification of estimated TIL proportions in miR-155hi and miR-155lo breast cancer tumors. n = 432 per group. (G) Correlations of miR-155 levels with the percentages of TILs in breast cancer tumor tissues. n = 864. (C) Wilcoxon’s rank sum test was carried out to compare T cell activation–related gene expression between miR-155hi and miR-155lo breast cancer tumors. ***P < 0.001. (D and G) P and r value were calculated based on Pearson’s correlation analysis. (F) Statistical significance was assessed using unpaired, 2-tailed Student’s t test, and all data are represented as mean ± SEM. ****P < 0.0001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 7 X users
On 2 Facebook pages
55 readers on Mendeley
See more details