Copolymer 1 (Cop 1, Copaxone [Teva Marion Partners, Kansas City, Missouri, USA]), a random amino acid copolymer of tyrosine (Y), glutamic acid (E), alanine (A), and lysine (K), reduces the frequency of relapses by 30% in relapsing-remitting multiple sclerosis (MS) patients. In the present study, novel random four–amino acid copolymers, whose design was based on the nature of the anchor residues of the immunodominant epitope of myelin basic protein (MBP) 85-99 and of the binding pockets of MS-associated HLA-DR2 (DRB1*1501), have been synthesized by solid-phase chemistry. Poly (Y, F, A, K) (YFAK) inhibited binding of the biotinylated MBP 86-100 epitope to HLA-DR2 molecules more efficiently than did either unlabeled MBP 85-99 or any other copolymer including Cop 1. Moreover, YFAK and poly (F, A, K) (FAK) were much more effective than Cop 1 in inhibition of MBP 85-99–specific HLA-DR2–restricted T cell clones. Most importantly, these novel copolymers suppressed experimental autoimmune encephalomyelitis, induced in the susceptible SJL/J (H-2s) strain of mice with the encephalitogenic epitope PLP 139-151, more efficiently than did Cop 1. Thus, random synthetic copolymers designed according to the binding motif of the human immunodominant epitope MBP 85-99 and the binding pockets of HLA-DR2 might be more beneficial than Cop 1 in treatment of MS.
Masha Fridkis-Hareli, Laura Santambrogio, Joel N.H. Stern, Lars Fugger, Celia Brosnan, Jack L. Strominger