Natural killer (NK) cells play an important role in host defense against viral infections and malignancy, and their role for regulating other components of the antiviral response is being investigated. In this issue of the JCI, Ali et al. examine the mechanisms by which NK cells migrate into the white pulp and mediate suppression of virus-specific T cells. Herein, the authors show that an acute lymphocytic choriomeningitis virus (LCMV) infection induced a potent type I IFN (IFN-I) response that resulted in the expression of chemokine receptor CXCR3 ligands and permitted NK cell trafficking to T cell zones. Collectively, these findings have broad implications for vaccination strategies and warrant further investigation into the transcriptomic profiles of these regulatory NK cells.
Tonya J. Webb
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 438 | 34 |
82 | 22 | |
Figure | 46 | 0 |
Citation downloads | 53 | 0 |
Totals | 619 | 56 |
Total Views | 675 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.