Astrocytes are highly heterogeneous in their phenotype and function, which contributes to CNS disease, repair, and aging; however, the molecular mechanism of their functional states remains largely unknown. Here, we show that activation of sirtuin 1 (SIRT1), a protein deacetylase, played an important role in the detrimental actions of reactive astrocytes, whereas its inactivation conferred these cells with antiinflammatory functions that inhibited the production of proinflammatory mediators by myeloid cells and microglia and promoted the differentiation of oligodendrocyte progenitor cells. Mice with astrocyte-specific Sirt1 knockout (Sirt1–/–) had suppressed progression of experimental autoimmune encephalomyelitis (EAE), an animal model of CNS inflammatory demyelinating disease. Ongoing EAE was also suppressed when Sirt1 expression in astrocytes was diminished by a CRISPR/Cas vector, resulting in reduced demyelination, decreased numbers of T cells, and an increased rate of IL-10–producing macrophages and microglia in the CNS, whereas the peripheral immune response remained unaffected. Mechanistically, Sirt1–/– astrocytes expressed a range of nuclear factor erythroid–derived 2–like 2 (Nfe2l2) target genes, and Nfe2l2 deficiency shifted the beneficial action of Sirt1–/– astrocytes to a detrimental one. These findings identify an approach for switching the functional state of reactive astrocytes that will facilitate the development of astrocyte-targeting therapies for inflammatory neurodegenerative diseases such as multiple sclerosis.
Weifeng Zhang, Dan Xiao, Xing Li, Yuan Zhang, Javad Rasouli, Giacomo Casella, Alexandra Boehm, Daniel Hwang, Larissa L.W. Ishikawa, Rodolfo Thome, Bogoljub Ciric, Mark T. Curtis, Abdolmohamad Rostami, Guang-Xian Zhang
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,725 | 514 |
232 | 164 | |
Figure | 483 | 16 |
Supplemental data | 71 | 21 |
Citation downloads | 78 | 0 |
Totals | 2,589 | 715 |
Total Views | 3,304 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.