Vascular calcification is a common complication of chronic kidney disease (CKD), and one of the main risk factors for increased cardiovascular morbidity and mortality in patients with CKD. In this issue of the JCI, Ouyang and Su et al. report that Alkb homolog 1 (ALKBH1), a DNA demethylase, reduced DNA N6-methyladenine (6mA) in vascular smooth muscle cells (VSMCs) and leukocytes, thus leading to aortic arch calcification in the patients with CKD. During the progression of vascular calcification, increased ALKBH1 expression was linked to decreased 6mA levels, findings that the authors noted in both patients with CKD and CKD mouse models. The kidney and vascular disease risk factor soluble urokinase receptor (suPAR) was also elevated in the plasma. Notably, lower 6mA levels induced BMP2-mediated osteogenic reprogramming in the VSMCs. These findings present a function of ALKBH1 in vascular calcification and provide a framework for therapeutic strategies.
Ke Zhu, Jochen Reiser
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 450 | 85 |
105 | 40 | |
Figure | 60 | 0 |
Citation downloads | 67 | 0 |
Totals | 682 | 125 |
Total Views | 807 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.