BACKGROUND Although convalescent plasma has been widely used to treat severe coronavirus disease 2019 (COVID-19), data from randomized controlled trials that support its efficacy are limited.METHODS We conducted a randomized, double-blind, controlled trial among adults hospitalized with severe and critical COVID-19 at 5 sites in New York City (USA) and Rio de Janeiro (Brazil). Patients were randomized 2:1 to receive a single transfusion of either convalescent plasma or normal control plasma. The primary outcome was clinical status at 28 days following randomization, measured using an ordinal scale and analyzed using a proportional odds model in the intention-to-treat population.RESULTS Of 223 participants enrolled, 150 were randomized to receive convalescent plasma and 73 to receive normal control plasma. At 28 days, no significant improvement in the clinical scale was observed in participants randomized to convalescent plasma (OR 1.50, 95% confidence interval [CI] 0.83–2.68, P = 0.180). However, 28-day mortality was significantly lower in participants randomized to convalescent plasma versus control plasma (19/150 [12.6%] versus 18/73 [24.6%], OR 0.44, 95% CI 0.22–0.91, P = 0.034). The median titer of anti–SARS-CoV-2 neutralizing antibody in infused convalescent plasma units was 1:160 (IQR 1:80–1:320). In a subset of nasopharyngeal swab samples from Brazil that underwent genomic sequencing, no evidence of neutralization-escape mutants was detected.CONCLUSION In adults hospitalized with severe COVID-19, use of convalescent plasma was not associated with significant improvement in day 28 clinical status. However, convalescent plasma was associated with significantly improved survival. A possible explanation is that survivors remained hospitalized at their baseline clinical status.TRIAL REGISTRATION ClinicalTrials.gov, NCT04359810.FUNDING Amazon Foundation, Skoll Foundation.
Max R. O’Donnell, Beatriz Grinsztejn, Matthew J. Cummings, Jessica E. Justman, Matthew R. Lamb, Christina M. Eckhardt, Neena M. Philip, Ying Kuen Cheung, Vinay Gupta, Esau João, Jose Henrique Pilotto, Maria Pia Diniz, Sandra Wagner Cardoso, Darryl Abrams, Kartik N. Rajagopalan, Sarah E. Borden, Allison Wolf, Leon Claude Sidi, Alexandre Vizzoni, Valdilea G. Veloso, Zachary C. Bitan, Dawn E. Scotto, Benjamin J. Meyer, Samuel D. Jacobson, Alex Kantor, Nischay Mishra, Lokendra V. Chauhan, Elizabeth F. Stone, Flavia Dei Zotti, Francesca La Carpia, Krystalyn E. Hudson, Stephen A. Ferrara, Joseph Schwartz, Brie A. Stotler, Wen-Hsuan W. Lin, Sandeep N. Wontakal, Beth Shaz, Thomas Briese, Eldad A. Hod, Steven L. Spitalnik, Andrew Eisenberger, Walter I. Lipkin
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,199 | 100 |
143 | 79 | |
Figure | 200 | 11 |
Table | 103 | 0 |
Supplemental data | 115 | 5 |
Citation downloads | 88 | 0 |
Totals | 1,848 | 195 |
Total Views | 2,043 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.