Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI1478

Alveolar epithelial fluid clearance is mediated by endogenous catecholamines at birth in guinea pigs.

N Finley, A Norlin, D L Baines, and H G Folkesson

Department of Animal Physiology, Lund University, S-223 62 Lund, Sweden.

Find articles by Finley, N. in: PubMed | Google Scholar

Department of Animal Physiology, Lund University, S-223 62 Lund, Sweden.

Find articles by Norlin, A. in: PubMed | Google Scholar

Department of Animal Physiology, Lund University, S-223 62 Lund, Sweden.

Find articles by Baines, D. in: PubMed | Google Scholar

Department of Animal Physiology, Lund University, S-223 62 Lund, Sweden.

Find articles by Folkesson, H. in: PubMed | Google Scholar

Published March 1, 1998 - More info

Published in Volume 101, Issue 5 on March 1, 1998
J Clin Invest. 1998;101(5):972–981. https://doi.org/10.1172/JCI1478.
© 1998 The American Society for Clinical Investigation
Published March 1, 1998 - Version history
View PDF
Abstract

Transition from placental to pulmonary oxygenation at birth depends on a rapid removal of fetal lung fluid from the developing alveoli. Alveolar fluid clearance was examined in ventilated, anesthetized developing guinea pigs of the ages newborn, 2-d-old, 5-d-old, 30-d-old, and 60-d-old (adult). An isosmolar 5% albumin solution was instilled into the lungs of the guinea pigs; the guinea pigs were then studied for 1 h. Alveolar fluid clearance was measured from the increase in alveolar protein concentration as water was reabsorbed. Newborn guinea pigs had a very high alveolar fluid clearance rate that declined rapidly within the first 5 postnatal days towards adult levels. The high alveolar fluid clearance at birth was apparently mediated by the beta-adrenergic system as demonstrated by the elevated plasma epinephrine levels and the increased sensitivity to inhibition by the beta-adrenergic antagonist propranolol immediately after birth. Surprisingly, exogenous addition of epinephrine was not able to stimulate alveolar fluid clearance in the newborn lung, but exogenous epinephrine stimulation increased over time to adult levels. The elevated alveolar fluid clearance at birth was associated with a significantly greater amiloride sensitivity in the newborn guinea pig lung. Northern blot analysis of distal lung tissue as well as isolated alveolar epithelial type II cells showed and confirmed higher levels of the alpha-subunit of the epithelial sodium channel mRNA in the newborn lung that rapidly tapered off toward adult levels. In conclusion, these data demonstrate the importance of the beta-adrenergic system and amiloride-sensitive sodium transporting pathways for clearance of fetal lung fluid at birth.

Version history
  • Version 1 (March 1, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts