Propranolol, a pleiotropic β-adrenergic blocker, has been anecdotally reported to reduce cerebral cavernous malformations (CCMs) in humans. However, propranolol has not been rigorously evaluated in animal models, nor has its mechanism of action in CCM been defined. We report that propranolol or its S(-) enantiomer dramatically reduced embryonic venous cavernomas in ccm2 mosaic zebrafish, whereas R-(+)-propranolol, lacking β antagonism, had no effect. Silencing of the β1, but not β2, adrenergic receptor mimicked the beneficial effects of propranolol in a zebrafish CCM model, as did the β1-selective antagonist metoprolol. Thus, propranolol ameliorated cavernous malformations by β1 adrenergic antagonism in zebrafish. Oral propranolol significantly reduced lesion burden in 2 chronic murine models of the exceptionally aggressive Pdcd10/Ccm3 form of CCM. Propranolol or other β1-selective antagonists may be beneficial in CCM disease.
Wenqing Li, Robert Shenkar, Mathew R. Detter, Thomas Moore, Christian Benavides, Rhonda Lightle, Romuald Girard, Nicholas Hobson, Ying Cao, Yan Li, Erin Griffin, Carol Gallione, Joseph M. Zabramski, Mark H. Ginsberg, Douglas A. Marchuk, Issam A. Awad
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 653 | 199 |
158 | 69 | |
Figure | 237 | 5 |
Supplemental data | 100 | 15 |
Citation downloads | 69 | 0 |
Totals | 1,217 | 288 |
Total Views | 1,505 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.