Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
IRF3 reduces adipose thermogenesis via ISG15-mediated reprogramming of glycolysis
Shuai Yan, … , Rasheed Ahmad, Evan D. Rosen
Shuai Yan, … , Rasheed Ahmad, Evan D. Rosen
Published February 11, 2021
Citation Information: J Clin Invest. 2021;131(7):e144888. https://doi.org/10.1172/JCI144888.
View: Text | PDF
Research Article Metabolism Article has an altmetric score of 3

IRF3 reduces adipose thermogenesis via ISG15-mediated reprogramming of glycolysis

  • Text
  • PDF
Abstract

Adipose thermogenesis is repressed in obesity, reducing the homeostatic capacity to compensate for chronic overnutrition. Inflammation inhibits adipose thermogenesis, but little is known about how this occurs. Here we showed that the innate immune transcription factor IRF3 is a strong repressor of thermogenic gene expression and oxygen consumption in adipocytes. IRF3 achieved this by driving expression of the ubiquitin-like modifier ISG15, which became covalently attached to glycolytic enzymes, thus reducing their function and decreasing lactate production. Lactate repletion was able to restore thermogenic gene expression, even when the IRF3/ISG15 axis was activated. Mice lacking ISG15 phenocopied mice lacking IRF3 in adipocytes, as both had elevated energy expenditure and were resistant to diet-induced obesity. These studies provide a deep mechanistic understanding of how the chronic inflammatory milieu of adipose tissue in obesity prevents thermogenic compensation for overnutrition.

Authors

Shuai Yan, Manju Kumari, Haopeng Xiao, Christopher Jacobs, Shihab Kochumon, Mark Jedrychowski, Edward Chouchani, Rasheed Ahmad, Evan D. Rosen

×

Figure 1

Adipocyte-specific IRF3 deficiency increases thermogenic gene expression.

Options: View larger image (or click on image) Download as PowerPoint
Adipocyte-specific IRF3 deficiency increases thermogenic gene expression...
(A) Schematic diagram showing generation of FI3KO mice. (B) Irf3 mRNA expression in isolated primary adipocytes from inguinal white adipose tissue (iWAT) and epididymal white adipose tissue (eWAT) of 8-week-old WT and FI3KO mice (n = 6). (C) Western blot of IRF3 protein in SVF from iWAT and eWAT of 8-week-old WT and FI3KO male mice (n = 3). (D) Thermogenic gene expression in brown adipose tissue (BAT) of chow-fed WT and FI3KO mice after 7 days of cold challenge (n = 8–10). (E) Western blot of UCP1 in iWAT and BAT of mice as described in D (n = 3). (F) UCP1 staining of iWAT of WT and FI3KO mice as described in D. Scale bar: 100 μm. Statistical comparisons were made using 2-tailed Student’s t test (B and D). All data are mean ± SEM. *P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 6 X users
52 readers on Mendeley
See more details