Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Blocking Borrelia burgdorferi transmission from infected ticks to nonhuman primates with a human monoclonal antibody
Zachary A. Schiller, … , Mark S. Klempner, Yang Wang
Zachary A. Schiller, … , Mark S. Klempner, Yang Wang
Published April 29, 2021
Citation Information: J Clin Invest. 2021;131(11):e144843. https://doi.org/10.1172/JCI144843.
View: Text | PDF
Research Article Immunology Infectious disease Article has an altmetric score of 202

Blocking Borrelia burgdorferi transmission from infected ticks to nonhuman primates with a human monoclonal antibody

  • Text
  • PDF
Abstract

Disrupting transmission of Borrelia burgdorferi sensu lato complex (B. burgdorferi) from infected ticks to humans is one strategy to prevent the significant morbidity from Lyme disease. We have previously shown that an anti-OspA human mAb, 2217, prevents transmission of B. burgdorferi from infected ticks in animal models. Maintenance of a protective plasma concentration of a human mAb for tick season presents a significant challenge for a preexposure prophylaxis strategy. Here, we describe the optimization of mAb 2217 by amino acid substitutions (2217LS: M428L and N434S) in the Fc domain. The LS mutation led to a 2-fold increase in half-life in cynomolgus monkeys. In a rhesus macaque model, 2217LS protected animals from tick transmission of spirochetes at a dose of 3 mg/kg. Crystallographic analysis of Fab in complex with OspA revealed that 2217 bound an epitope that was highly conserved among the B. burgdorferi, B. garinii, and B. afzelii species. Unlike most vaccines that may require boosters to achieve protection, our work supports the development of 2217LS as an effective preexposure prophylaxis in Lyme-endemic regions, with a single dose at the beginning of tick season offering immediate protection that remains for the duration of exposure risk.

Authors

Zachary A. Schiller, Michael J. Rudolph, Jacqueline R. Toomey, Monir Ejemel, Alan LaRochelle, Simon A. Davis, Havard S. Lambert, Aurélie Kern, Amanda C. Tardo, Colby A. Souders, Eric Peterson, Rebecca D. Cannon, Chandrashekar Ganesa, Frank Fazio, Nicholas J. Mantis, Lisa A. Cavacini, John Sullivan-Bolyai, Linden T. Hu, Monica E. Embers, Mark S. Klempner, Yang Wang

×

Figure 1

Efficacy characterization of 2217LS.

Options: View larger image (or click on image) Download as PowerPoint
Efficacy characterization of 2217LS.
(A) The binding activity of 2217 (r...
(A) The binding activity of 2217 (red circles) and 2217LS (blue squares) was determined by ELISA against B. burgdorferi outer surface protein A (OspA) using ELISA. The EC50 values were calculated and represent the concentration of mAb required for a 50% reduction in absorbance measured at 405 nm. Binding data are plotted as n = 3 independent studies. (B) The borreliacidal activity of 2217 and 2217LS was determined by incubating 2217 and 2217LS (0.4 nM to 50 nM) with B. burgdorferi spirochetes. The viability of spirochetes was quantified by luciferase detection and normalized against an irrelevant IgG control. The percentages of live spirochetes were plotted as n = 4 independent studies. The EC50 for B. burgdorferi increased from 0.48 ± 0.32 nM for 2217 to 3.71 ± 2.81 nM for 2217LS. Whiskers represent minimum and maximum. Boxes represent IQR. Line represents the median, and dots represent data points (n = 4 for each group). (C) The in vivo efficacy was determined by challenging mice that were administered 5 mg/kg of either 2217 or 2217LS. The results indicated that 90% of mice (n = 10) treated with 2217LS were protected, which is comparable to the 93% of mice (n = 15) that were protected by 2217. Protection comparisons were conducted using 2-sided Fisher’s exact test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 24 news outlets
Blogged by 1
Posted by 15 X users
Reddited by 1
21 readers on Mendeley
See more details