Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

ZFP91 disturbs metabolic fitness and antitumor activity of tumor-infiltrating T cells
Feixiang Wang, … , Youqiong Ye, Qiang Zou
Feixiang Wang, … , Youqiong Ye, Qiang Zou
Published August 17, 2021
Citation Information: J Clin Invest. 2021;131(19):e144318. https://doi.org/10.1172/JCI144318.
View: Text | PDF
Research Article Immunology Metabolism Article has an altmetric score of 2

ZFP91 disturbs metabolic fitness and antitumor activity of tumor-infiltrating T cells

  • Text
  • PDF
Abstract

Proper metabolic activities facilitate T cell expansion and antitumor function; however, the mechanisms underlying disruption of the T cell metabolic program and function in the tumor microenvironment (TME) remain elusive. Here, we show a zinc finger protein 91–governed (ZFP91-governed) mechanism that disrupts the metabolic pathway and antitumor activity of tumor-infiltrating T cells. Single-cell RNA-Seq revealed that impairments in T cell proliferation and activation correlated with ZFP91 in tissue samples from patients with colorectal cancer. T cell–specific deletion of Zfp91 in mice led to enhanced T cell proliferation and potentiated T cell antitumor function. Loss of ZFP91 increased mammalian target of rapamycin complex 1 (mTORC1) activity to drive T cell glycolysis. Mechanistically, T cell antigen receptor–dependent (TCR-dependent) ZFP91 cytosolic translocation promoted protein phosphatase 2A (PP2A) complex assembly, thereby restricting mTORC1-mediated metabolic reprogramming. Our results demonstrate that ZFP91 perturbs T cell metabolic and functional states in the TME and suggest that targeting ZFP91 may improve the efficacy of cancer immunotherapy.

Authors

Feixiang Wang, Yuerong Zhang, Xiaoyan Yu, Xiao-Lu Teng, Rui Ding, Zhilin Hu, Aiting Wang, Zhengting Wang, Youqiong Ye, Qiang Zou

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 990 185
PDF 140 53
Figure 433 12
Supplemental data 53 4
Citation downloads 93 0
Totals 1,709 254
Total Views 1,963

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 4 X users
19 readers on Mendeley
See more details