Ongoing observational clinical research has prioritized understanding the human immune response to SARS-CoV-2 during the coronavirus disease 2019 (COVID-19) pandemic. Several recent studies suggest that immune dysregulation with early and prolonged adaptive immune system activation can result in cellular exhaustion. In this issue of the JCI, Files et al. compared cellular immune phenotypes during the first two months of COVID-19 in hospitalized and less severe, non-hospitalized patients. The authors utilized flow cytometry to analyze circulating peripheral blood mononuclear cells. Both patient cohorts maintained B and T cell phenotypes consistent with activation and cellular exhaustion throughout the first two months of infection. Additionally, follow-up samples from the non-hospitalized patient cohort showed that activation markers and cellular exhaustion increased over time. These findings illustrate the persistent nature of the adaptive immune system changes that have been noted in COVID-19 and suggest longer term effects that may shape the maintenance of immunity to SARS-CoV-2.
Philip A. Mudd, Kenneth E. Remy
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 449 | 147 |
161 | 27 | |
Figure | 133 | 1 |
Citation downloads | 60 | 0 |
Totals | 803 | 175 |
Total Views | 978 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.