Useful animal models of disease in neuroscience can make accurate predictions about a therapeutic outcome, a feature known as predictive validity. In this issue of the JCI, Knowland et al. provide an improved model to assess nicotinic acetylcholine receptor (nAChR) ligands for treating chronic pain. The authors identify two proteins, the voltage-dependent calcium channel auxiliary subunit BARP and the unfolded protein response sensor IRE1α, that are required for robust heterologous expression of α6β4, an nAChR subtype in dorsal root ganglia (DRG). This nAChR is a candidate for the analgesic effects of nicotine as well as the frog toxin epibatidine. Now researchers can efficiently screen for α6β4 nAChR–selective agonists using heterologous expression systems. Candidates that emerge will enable researchers to test the predictive validity of mouse models for chronic pain in the nAChR context. If all these steps work, one can envision a class of non-opioid nAChR-targeted analgesics for chronic pain.
Stephen Grant, Henry A. Lester
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 487 | 37 |
103 | 20 | |
Citation downloads | 74 | 0 |
Totals | 664 | 57 |
Total Views | 721 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.