Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Neutrophil-to-hepatocyte communication via LDLR-dependent miR-223–enriched extracellular vesicle transfer ameliorates nonalcoholic steatohepatitis
Yong He, … , George Kunos, Bin Gao
Yong He, … , George Kunos, Bin Gao
Published December 10, 2020
Citation Information: J Clin Invest. 2021;131(3):e141513. https://doi.org/10.1172/JCI141513.
View: Text | PDF
Research Article Hepatology Article has an altmetric score of 14

Neutrophil-to-hepatocyte communication via LDLR-dependent miR-223–enriched extracellular vesicle transfer ameliorates nonalcoholic steatohepatitis

  • Text
  • PDF
Abstract

Neutrophil infiltration around lipotoxic hepatocytes is a hallmark of nonalcoholic steatohepatitis (NASH); however, how these 2 types of cells communicate remains obscure. We have previously demonstrated that neutrophil-specific microRNA-223 (miR-223) is elevated in hepatocytes to limit NASH progression in obese mice. Here, we demonstrated that this elevation of miR-223 in hepatocytes was due to preferential uptake of miR-223–enriched extracellular vesicles (EVs) derived from neutrophils as well other types of cells, albeit to a lesser extent. This selective uptake was dependent on the expression of low-density lipoprotein receptor (LDLR) on hepatocytes and apolipoprotein E (APOE) on neutrophil-derived EVs, which was enhanced by free fatty acids. Once internalized by hepatocytes, the EV-derived miR-223 acted to inhibit hepatic inflammatory and fibrogenic gene expression. In the absence of this LDLR- and APOE-dependent uptake of miR-223–enriched EVs, the progression of steatosis to NASH was accelerated. In contrast, augmentation of this transfer by treatment with an inhibitor of proprotein convertase subtilisin/kexin type 9, a drug used to lower blood cholesterol by upregulating LDLR, ameliorated NASH in mice. This specific role of LDLR and APOE in the selective control of miR-223–enriched EV transfer from neutrophils to hepatocytes may serve as a potential therapeutic target for NASH.

Authors

Yong He, Robim M. Rodrigues, Xiaolin Wang, Wonhyo Seo, Jing Ma, Seonghwan Hwang, Yaojie Fu, Eszter Trojnár, Csaba Mátyás, Suxian Zhao, Ruixue Ren, Dechun Feng, Pal Pacher, George Kunos, Bin Gao

×

Figure 10

Scheme depicting a selective LDLR- and APOE-dependent EV transfer of neutrophilic miR-223 into hepatocytes and its role in the progression of NAFLD.

Options: View larger image (or click on image) Download as PowerPoint
Scheme depicting a selective LDLR- and APOE-dependent EV transfer of neu...
In obesity, free fatty acids (FFAs) elevate miR-223 expression in neutrophils by regulating APOE/PU.1 signaling and miR-223 subsequently forms a feedback loop to prevent NASH progression by amplifying the preferential uptake of neutrophil-derived and antiinflammatory miR-223/APOE-enriched EVs in hepatocytes. This selective uptake is dependent on the expression of LDLR on hepatocytes and APOE on neutrophil-derived EVs. Upregulation of LDLR by treatment with the PCSK9 inhibitor alirocumab ameliorates NASH partially due to the augmentation of this miR-223 transfer.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Posted by 9 X users
80 readers on Mendeley
See more details