It is estimated that up to one in five individuals develop pituitary gland tumors. Despite the common occurrence of these tumors, the pathogenetic mechanisms underlying their development remain largely unknown. We report the identification of a novel pituitary tumor–derived, N-terminally truncated isoform of FGF receptor-4 (ptd-FGFR4). The corresponding mRNA results from alternative transcription initiation and encodes a polypeptide that lacks a signal peptide and the first two extracellular Ig-like domains. ptd-FGFR4 has a distinctive cytoplasmic residence, is constitutively phosphorylated, and is transforming in vitro and in vivo. Here we show that targeted expression of ptd-FGFR4, but not FGFR4, results in pituitary tumors that morphologically recapitulate the human disease.
Shereen Ezzat, Lei Zheng, Xian-Feng Zhu, Gillian E. Wu, Sylvia L. Asa
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 616 | 53 |
142 | 0 | |
Figure | 272 | 11 |
Citation downloads | 74 | 0 |
Totals | 1,104 | 64 |
Total Views | 1,168 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.