The mechanism by which maternal obesity influences fetal brain development and behavior is not well understood. In this issue of the JCI, Lippert et al. showed that feeding maternal mice a high-fat diet (HFD) during lactation attenuated the activity of dopamine (DA) midbrain neurons and altered the DA-related behavioral phenotype seen in the offspring. The authors further suggested that the altered excitatory and inhibitory balance between D1 medium spiny neurons (MSN) and D2 MSN mediates this behavioral phenotype. These mechanisms may provide strategies for preventing the negative effects of maternal obesity on offspring development and adult health.
Yuki Yasumoto, Tamas L. Horvath
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 292 | 46 |
76 | 20 | |
Figure | 54 | 1 |
Citation downloads | 77 | 0 |
Totals | 499 | 67 |
Total Views | 566 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.