The phosphoinositide 3-kinase–Akt/PKB pathway mediates the mitogenic effects various nutrients and growth factors in cultured cells. To study its effects in vivo in pancreatic islet β cells, we created transgenic mice that expressed a constitutively active Akt1/PKBα linked to an Insulin gene promoter. Transgenic mice exhibited a grossly visible increase in islet mass, largely due to proliferation of insulin-containing β cells. Morphometric analysis verified a six-fold increase in β cell mass/pancreas, a two-fold increase in 5-bromo-2′-deoxyuridine incorporation, a four-fold increase in the number of β cells per pancreas area, and a two-fold increase in cell size in transgenic compared with wild-type mice at 5 weeks. At least part of the increase in β cell number may be accounted for by neogenesis, defined by criteria that include β cells proliferating from ductular epithelium, and by a six-fold increase in the number of single and doublet β cells scattered throughout the exocrine pancreas of the transgenic mice. Glucose tolerance was improved, and fasting as well as fed insulin was greater compared with wild-type mice. Glucose-stimulated insulin secretion was maintained in transgenic mice, which were resistant to streptozotocin–induced diabetes. We conclude that activation of the Akt1/PKBα pathway affects islet β cell mass by alteration of size and number.
Ernesto Bernal-Mizrachi, Wu Wen, Sarah Stahlhut, Cris M. Welling, M. Alan Permutt
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 887 | 100 |
79 | 51 | |
Figure | 407 | 21 |
Table | 109 | 0 |
Citation downloads | 74 | 0 |
Totals | 1,556 | 172 |
Total Views | 1,728 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.