Pulmonary hypertension (PH) is characterized by pulmonary artery remodeling that can subsequently culminate in right heart failure and premature death. Emerging evidence suggests that hypoxia-inducible factor (HIF) signaling plays a fundamental and pivotal role in the pathogenesis of PH. This Review summarizes the regulation of HIF isoforms and their impact in various PH subtypes, as well as the elaborate conditional and cell-specific knockout mouse studies that brought the role of this pathway to light. We also discuss the current preclinical status of pan- and isoform-selective HIF inhibitors, and propose new research areas that may facilitate HIF isoform-specific inhibition as a novel therapeutic strategy for PH and right heart failure.
Soni Savai Pullamsetti, Argen Mamazhakypov, Norbert Weissmann, Werner Seeger, Rajkumar Savai
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,955 | 1,196 |
195 | 261 | |
Figure | 253 | 6 |
Table | 147 | 0 |
Citation downloads | 63 | 0 |
Totals | 2,613 | 1,463 |
Total Views | 4,076 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.