Pulmonary ischemia-reperfusion injury (IRI) is a clinical syndrome of acute lung injury that occurs after lung transplantation or remote organ ischemia. IRI causes early mortality and has no effective therapies. While NK cells are innate lymphocytes capable of recognizing injured cells, their roles in acute lung injury are incompletely understood. Here, we demonstrated that NK cells were increased in frequency and cytotoxicity in 2 different IRI mouse models. We showed that NK cells trafficked to the lung tissue from peripheral reservoirs and were more mature within lung tissue. Acute lung ischemia-reperfusion injury was blunted in a NK cell–deficient mouse strain but restored with adoptive transfer of NK cells. Mechanistically, NK cell NKG2D receptor ligands were induced on lung endothelial and epithelial cells following IRI, and antibody-mediated NK cell depletion or NKG2D stress receptor blockade abrogated acute lung injury. In human lung tissue, NK cells were increased at sites of ischemia-reperfusion injury and activated NK cells were increased in prospectively collected human bronchoalveolar lavage in subjects with severe IRI. These data support a causal role for recipient peripheral NK cells in pulmonary IRI via NK cell NKG2D receptor ligation. Therapies targeting NK cells may hold promise in acute lung injury.
Daniel R. Calabrese, Emily Aminian, Benat Mallavia, Fengchun Liu, Simon J. Cleary, Oscar A. Aguilar, Ping Wang, Jonathan P. Singer, Steven R. Hays, Jeffrey A. Golden, Jasleen Kukreja, Daniel Dugger, Mary Nakamura, Lewis L. Lanier, Mark R. Looney, John R. Greenland
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 884 | 227 |
142 | 87 | |
Figure | 565 | 2 |
Table | 46 | 0 |
Supplemental data | 84 | 5 |
Citation downloads | 65 | 0 |
Totals | 1,786 | 321 |
Total Views | 2,107 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.