Characterization of the key cellular targets contributing to sustained microglial activation in neurodegenerative diseases, including Parkinson’s disease (PD), and optimal modulation of these targets can provide potential treatments to halt disease progression. Here, we demonstrated that microglial Kv1.3, a voltage-gated potassium channel, was transcriptionally upregulated in response to aggregated α-synuclein (αSynAgg) stimulation in primary microglial cultures and animal models of PD, as well as in postmortem human PD brains. Patch-clamp electrophysiological studies confirmed that the observed Kv1.3 upregulation translated to increased Kv1.3 channel activity. The kinase Fyn, a risk factor for PD, modulated transcriptional upregulation and posttranslational modification of microglial Kv1.3. Multiple state-of-the-art analyses, including Duolink proximity ligation assay imaging, revealed that Fyn directly bound to Kv1.3 and posttranslationally modified its channel activity. Furthermore, we demonstrated the functional relevance of Kv1.3 in augmenting the neuroinflammatory response by using Kv1.3-KO primary microglia and the Kv1.3-specific small-molecule inhibitor PAP-1, thus highlighting the importance of Kv1.3 in neuroinflammation. Administration of PAP-1 significantly inhibited neurodegeneration and neuroinflammation in multiple animal models of PD. Collectively, our results imply that Fyn-dependent regulation of Kv1.3 channels plays an obligatory role in accentuating the neuroinflammatory response in PD and identify Kv1.3 as a potential therapeutic target for PD.
Souvarish Sarkar, Hai M. Nguyen, Emir Malovic, Jie Luo, Monica Langley, Bharathi N. Palanisamy, Neeraj Singh, Sireesha Manne, Matthew Neal, Michelle Gabrielle, Ahmed Abdalla, Poojya Anantharam, Dharmin Rokad, Nikhil Panicker, Vikrant Singh, Muhammet Ay, Adhithiya Charli, Dilshan Harischandra, Lee-Way Jin, Huajun Jin, Srikant Rangaraju, Vellareddy Anantharam, Heike Wulff, Anumantha G. Kanthasamy
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 2,159 | 808 |
220 | 197 | |
Figure | 550 | 9 |
Supplemental data | 89 | 21 |
Citation downloads | 102 | 0 |
Totals | 3,120 | 1,035 |
Total Views | 4,155 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.