Essential tremor is a common brain disorder affecting millions of people, yet the neuronal mechanisms underlying this prevalent disease remain elusive. Here, we showed that conditional deletion of synaptotagmin-2, the fastest Ca2+ sensor for synaptic neurotransmitter release, from parvalbumin neurons in mice caused an action tremor syndrome resembling the core symptom of essential tremor patients. Combining brain region–specific and cell type–specific genetic manipulation methods, we found that deletion of synaptotagmin-2 from excitatory parvalbumin-positive neurons in cerebellar nuclei was sufficient to generate an action tremor. The synaptotagmin-2 deletion converted synchronous into asynchronous neurotransmitter release in projections from cerebellar nuclei neurons onto gigantocellular reticular nucleus neurons, which might produce an action tremor by causing signal oscillations during movement. The tremor was rescued by completely blocking synaptic transmission with tetanus toxin in cerebellar nuclei, which also reversed the tremor phenotype in the traditional harmaline-induced essential tremor model. Using a promising animal model for action tremor, our results thus characterized a synaptic circuit mechanism that may underlie the prevalent essential tremor disorder.
Mu Zhou, Maxwell D. Melin, Wei Xu, Thomas C. Südhof
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 773 | 174 |
129 | 74 | |
Figure | 418 | 1 |
Table | 79 | 0 |
Supplemental data | 322 | 22 |
Citation downloads | 51 | 0 |
Totals | 1,772 | 271 |
Total Views | 2,043 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.