The prion agent is unique in biology and is comprised of prion protein scrapie (PrPSc), a self-templating conformational variant of the host encoded prion protein cellular (PrPC). The deposition patterns of PrPSc in the CNS can vary considerably from a diffuse synaptic pattern to large plaque-like aggregates. Alterations of PrPC posttranslational processing can change PrPSc deposition patterns; however, the mechanism underlying these observations is unclear. In this issue of the JCI, Sevillano and authors determined that parenchymal PrPSc plaques of the mouse brain preferentially incorporated underglycosylated PrPC that had been liberated from the cell surface by the metalloproteinase, ADAM-10, in combination with heparan sulfate. These results provide mechanistic insight into the formation of PrPSc plaques and suggest that PrP posttranslational modifications direct pathogenicity as well as the rate of disease progression.
Jason C. Bartz
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 181 | 34 |
64 | 15 | |
Figure | 57 | 1 |
Citation downloads | 45 | 0 |
Totals | 347 | 50 |
Total Views | 397 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.