The baroreceptor reflex is a powerful neural feedback that regulates arterial pressure (AP). Mechanosensitive channels transduce pulsatile AP to electrical signals in baroreceptors. Here we show that tentonin 3 (TTN3/TMEM150C), a cation channel activated by mechanical strokes, is essential for detecting AP changes in the aortic arch. TTN3 was expressed in nerve terminals in the aortic arch and nodose ganglion (NG) neurons. Genetic ablation of Ttn3 induced ambient hypertension, tachycardia, AP fluctuations, and impaired baroreflex sensitivity. Chemogenetic silencing or activation of Ttn3+ neurons in the NG resulted in an increase in AP and heart rate, or vice versa. More important, overexpression of Ttn3 in the NG of Ttn3–/– mice reversed the cardiovascular changes observed in Ttn3–/– mice. We conclude that TTN3 is a molecular component contributing to the sensing of dynamic AP changes in baroreceptors.
Huan-Jun Lu, Thien-Luan Nguyen, Gyu-Sang Hong, Sungmin Pak, Hyesu Kim, Hyungsup Kim, Dong-Yoon Kim, Sung-Yon Kim, Yiming Shen, Pan Dong Ryu, Mi-Ock Lee, Uhtaek Oh
TTN3 is responsible for SA MA currents in aortic arch–projecting NG neurons.