Excessive fecal bile acid (BA) loss causes symptoms in a large proportion of people diagnosed with irritable bowel syndrome with diarrhea, a common functional bowel disorder. This BA diarrhea (BAD) results from increased hepatic synthesis of BAs, with impaired negative feedback regulation by the ileal hormone fibroblast growth factor 19 (FGF19). In this issue of the JCI, Zhao et al. investigated BA metabolism, including fecal BAs, serum BAs, and FGF19, in patients and controls. They identified associations between fecal bacterial BA metabolism and specific microbiota, especially Clostridium scindens. These findings have been tested in a mouse model using microbiota transplants and antibiotic treatment. This group of organisms has potential as a biomarker for BAD and to be a target for therapy.
Julian R.F. Walters, Julian R. Marchesi
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 517 | 65 |
129 | 14 | |
Figure | 103 | 0 |
Citation downloads | 63 | 0 |
Totals | 812 | 79 |
Total Views | 891 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.