Primary T cell proliferative responses to TCR ligation plus CD28 costimulation are surprisingly heterogeneous. Many cells that enter G1 fail to progress further through the cell cycle, and some of these cells subsequently fail to divide upon restimulation, even in the presence of IL-2. Such IL-2–refractory anergy is distinct from the IL-2–reversible anergy induced by TCR occupancy in the absence of CD28 costimulation. Here, we focus on the contributions of cell cycle progression and costimulatory (CD28/CTLA-4) signals in the regulation of anergy. We show that CD28 costimulation is not sufficient for anergy avoidance and that activated T cells must progress through the cell cycle in order to escape anergy. Induction of this “division-arrest” form of anergy requires CTLA-4 signaling during the primary response. Also, cell division per se is not sufficient for anergy avoidance: the few T cells that undergo multiple rounds of cell division during overt CD28 costimulatory blockade do not escape the ultimate induction of clonal anergy. Anergy avoidance by primary T cells is thus a multistep process: in order to participate in a productive immune response, an individual T cell activated through its antigen receptor must receive CD28 costimulation and progress through the cell cycle. Anergy may be induced either through a combination of CTLA-4 signaling and the failure of cell cycle progression, or through a proliferation-independent mechanism in which TCR ligation occurs in the absence of CD28.
Andrew D. Wells, Matthew C. Walsh, Jeffrey A. Bluestone, Laurence A. Turka
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 633 | 50 |
62 | 24 | |
Figure | 212 | 5 |
Table | 39 | 0 |
Citation downloads | 57 | 0 |
Totals | 1,003 | 79 |
Total Views | 1,082 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.