Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Arachidonic acid as a bioactive molecule
Alan R. Brash
Alan R. Brash
Published June 1, 2001
Citation Information: J Clin Invest. 2001;107(11):1339-1345. https://doi.org/10.1172/JCI13210.
View: Text | PDF
Perspective Article has an altmetric score of 6

Arachidonic acid as a bioactive molecule

  • Text
  • PDF
Abstract

Authors

Alan R. Brash

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Arachidonic acid concentrations in experimental and physiological settin...
Arachidonic acid concentrations in experimental and physiological settings. Differing sizes of the AA (arachidonic acid) represent differing concentrations. The concentrations range from the nanomolar level for extracellular, unbound, free AA in the physiological setting (right side), up to the high micromolar levels, often used in the absence of binding proteins, in the experimental situation (left side). The ranges on concentrations in practice are considerably more divergent than are represented here by the size of AA. Proteins in the cell membrane may facilitate uptake of extracellular arachidonate and its presentation to a coenzyme A synthetase for esterification. Fatty acid binding proteins (FABP) facilitate transfer and modulate the available concentrations of arachidonic acid within cells. FA transporter = fatty acid transporter.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
251 readers on Mendeley
See more details