Limitation of movement during fetal development may lead to multiple joint contractures in the neonate, termed arthrogryposis multiplex congenita. Neuromuscular disorders are among the many different causes of reduced fetal movement. Many congenital myasthenic syndromes (CMSs) are due to mutations of the adult-specific ε subunit of the acetylcholine receptor (AChR), and, thus, functional deficits do not arise until late in gestation. However, an earlier effect on the fetus might be predicted with some defects of other AChR subunits. We studied a child who presented at birth with joint contractures and was subsequently found to have a CMS. Mutational screening revealed heteroallelic mutation within the AChR δ subunit gene, δ756ins2 and δE59K. Expression studies demonstrate that δ756ins2 is a null mutation. By contrast, both fetal and adult AChR containing δE59K have shorter than normal channel activations that predict fast decay of endplate currents. Thus, δE59K causes dysfunction of fetal as well as the adult AChR and would explain the presence of joint contractures on the basis of reduced fetal movement. This is the first report of the association of AChR gene mutations with arthrogryposis multiplex congenita. It is probable that mutations that severely disrupt function of fetal AChR will underlie additional cases.
Sharon Brownlow, Richard Webster, Rebecca Croxen, Martin Brydson, Brian Neville, Jean-Pierre Lin, Angela Vincent, John Newsom-Davis, David Beeson
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 361 | 50 |
61 | 32 | |
Figure | 129 | 5 |
Table | 33 | 0 |
Citation downloads | 47 | 0 |
Totals | 631 | 87 |
Total Views | 718 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.