Advanced phenotyping of cardiovascular diseases has evolved with the application of high-resolution omics screening to populations enrolled in large-scale observational and clinical trials. This strategy has revealed that considerable heterogeneity exists at the genotype, endophenotype, and clinical phenotype levels in cardiovascular diseases, a feature of the most common diseases that has not been elucidated by conventional reductionism. In this discussion, we address genomic context and (endo)phenotypic heterogeneity, and examine commonly encountered cardiovascular diseases to illustrate the genotypic underpinnings of (endo)phenotypic diversity. We highlight the existing challenges in cardiovascular disease genotyping and phenotyping that can be addressed by the integration of big data and interpreted using novel analytical methodologies (network analysis). Precision cardiovascular medicine will only be broadly applied to cardiovascular patients once this comprehensive data set is subjected to unique, integrative analytical strategies that accommodate molecular and clinical heterogeneity rather than ignore or reduce it.
Jane A. Leopold, Bradley A. Maron, Joseph Loscalzo
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,271 | 339 |
206 | 99 | |
Figure | 207 | 7 |
Citation downloads | 60 | 0 |
Totals | 1,744 | 445 |
Total Views | 2,189 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.