Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Deubiquitinating ALDH1A3 key to maintaining the culprit of aggressive brain cancer
Hiroaki Wakimoto
Hiroaki Wakimoto
Published April 8, 2019
Citation Information: J Clin Invest. 2019;129(5):1833-1835. https://doi.org/10.1172/JCI128742.
View: Text | PDF
Commentary

Deubiquitinating ALDH1A3 key to maintaining the culprit of aggressive brain cancer

  • Text
  • PDF
Abstract

Cancer stem cells sustain propagation of the deadly primary brain cancer glioblastoma. Glioblastoma stem cells (GSCs) characterized by a mesenchymal phenotype are aggressive and resistant to therapies and represent a crucial therapeutic target. In this issue of the JCI, Chen et al. show that the intracellular levels of aldehyde dehydrogenase 1A3 (ALDH1A3), known as a functional marker of mesenchymal GSCs, are regulated posttranslationally by ubiquitin-specific protease 9X–mediated (USP9X-mediated) deubiquitination. Increased expression of USP9X stabilizes ALDH1A3, enabling GSCs to exhibit mesenchymal traits and the malignant phenotype. Thus, the USP9X-ALDH1A3 axis may offer a novel therapeutic target in glioblastoma.

Authors

Hiroaki Wakimoto

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 362 23
PDF 125 15
Figure 31 1
Citation downloads 68 0
Totals 586 39
Total Views 625

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts