Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Lactate dehydrogenase 5: identification of a druggable target to reduce oxaluria
Jacob S. Stevens, Qais Al-Awqati
Jacob S. Stevens, Qais Al-Awqati
Published May 20, 2019
Citation Information: J Clin Invest. 2019;129(6):2201-2204. https://doi.org/10.1172/JCI128709.
View: Text | PDF
Commentary

Lactate dehydrogenase 5: identification of a druggable target to reduce oxaluria

  • Text
  • PDF
Abstract

Excessive excretion of oxalate in the urine results in the formation of calcium oxalate crystals and subsequent kidney stone formation. Severe forms of hyperoxaluria, including genetic forms and those that result from ethylene glycol poisoning, can result in end-stage renal disease. Therapeutic interventions are limited and often rely on dietary intervention. In this issue of the JCI, Le Dudal and colleagues demonstrate that the lactate dehydrogenase 5 inhibitor (LDH5) stiripentol reduces urinary oxalate excretion. Importantly, stiripentol treatment of a single individual with primary hyperoxaluria reduced the urinary oxalate excretion. Together, these results support further evaluation of LDH5 as a therapeutic target for hyperoxaluria.

Authors

Jacob S. Stevens, Qais Al-Awqati

×

Figure 1

Multicompartment glyoxylate-oxalate metabolism.

Options: View larger image (or click on image) Download as PowerPoint
Multicompartment glyoxylate-oxalate metabolism.
Multiple metabolic pathw...
Multiple metabolic pathways converge to produce glyoxylate before conversion to oxalate. Defects in enzymes responsible for metabolism of glyoxylate and its precursors (denoted in blue) underlie specific forms of primary hyperoxaluria (PH) and lead to accumulation of glyoxylate and consequently to increased oxalate production which leaves the hepatocyte via SLC26a1 on its basolateral membrane. Mutations in AGT1 associate with PH1, mutations in GR are linked to PH2, and HOGA mutations underlie PH3. Inhibition of LDH5 by the drug stiripentol decreases enzymatic conversion of glyoxylate to oxalate and decreases urinary oxalate levels. Vitamin B6 (also known as pyridoxal phosphate) has been shown to increase enzymatic activity and decrease oxalate production in PH1. PH1, primary hyperoxaluria type I; PH2, primary hyperoxaluria type II; PH3, primary hyperoxaluria type III; ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; GR, glycolate reductase; GO, glycolate oxidase; LDH5, lactate dehydrogenase 5; OH-OG, 4-hydroxy-2-oxoglutarate; HOGA, 4-hydroxy-2-oxoglutarate aldolase; AGT1, alanine glyoxylate aminotransferase 1; AGT2, alanine glyoxylate aminotransferase 2; DAO, D-amino oxidase; B6, vitamin B6/pyridoxal phosphate.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts