Cancer cachexia is a major cause of patient morbidity and mortality, with no efficacious treatment or management strategy. Despite cachexia sharing pathophysiological features with a number of neuromuscular wasting conditions, including age-related sarcopenia, the mechanisms underlying cachexia remain poorly understood. Studies of related conditions suggest that pathological targeting of the neuromuscular junction (NMJ) may play a key role in cachexia, but this has yet to be investigated in human patients. Here, high-resolution morphological analyses were undertaken on NMJs of rectus abdominis obtained from patients undergoing upper GI cancer surgery compared with controls (N = 30; n = 1,165 NMJs). Cancer patients included those with cachexia and weight-stable disease. Despite the low skeletal muscle index and significant muscle fiber atrophy (P < 0.0001) in patients with cachexia, NMJ morphology was fully conserved. No significant differences were observed in any of the pre- and postsynaptic variables measured. We conclude that NMJs remain structurally intact in rectus abdominis in both cancer and cachexia, suggesting that denervation of skeletal muscle is not a major driver of pathogenesis. The absence of NMJ pathology is in stark contrast to what is found in related conditions, such as age-related sarcopenia, and supports the hypothesis that intrinsic changes within skeletal muscle, independent of any changes in motor neurons, represent the primary locus of neuromuscular pathology in cancer cachexia.
Ines Boehm, Janice Miller, Thomas M. Wishart, Stephen J. Wigmore, Richard J.E. Skipworth, Ross A. Jones, Thomas H. Gillingwater
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 821 | 208 |
138 | 42 | |
Figure | 179 | 2 |
Supplemental data | 83 | 17 |
Citation downloads | 88 | 0 |
Totals | 1,309 | 269 |
Total Views | 1,578 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.