The role of urokinase-type plasminogen activator receptor (uPAR) in kidney physiology and pathology has attracted considerable attention. The protein uPAR has dual functions: as a key regulator of plasmin generation and a component of the innate immune system. In the current issue, Wei and colleagues describe a transgenic mouse expressing Plaur RNA in glomerular podocytes. The mice manifested podocyte injury, including c-Src phosphorylation, proteinuria, and focal segmental glomerulosclerosis (FSGS). Plaur-transgenic mice on a β3 integrin–deficient background were protected from podocyte injury. Renal biopsies from subjects with FSGS, but not those with other glomerular diseases, manifested increased c-Src phosphorylation in podocytes. These findings suggest a novel injury mechanism in FSGS, with possible implications for new treatment strategies.
Jeffrey B. Kopp, Jurgen Heymann
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 335 | 31 |
101 | 11 | |
Figure | 67 | 0 |
Citation downloads | 80 | 0 |
Totals | 583 | 42 |
Total Views | 625 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.