Abstract

Preclinical studies demonstrate that rapid-acting antidepressants, including ketamine, require stimulation of mTORC1 signaling. This pathway is regulated by neuronal activity and endocrine and metabolic signals, notably including the amino acid leucine, which activates mTORC1 signaling via binding to the upstream regulator sestrin. Here, we examined the antidepressant actions of NV-5138, a highly selective small molecule modulator of sestrin that penetrates the blood-brain barrier. The results demonstrate that a single dose of NV-5138 produced rapid and long-lasting antidepressant effects and rapidly reversed anhedonia caused by chronic stress exposure. The antidepressant actions of NV-5138 required brain-derived neurotrophic factor (BDNF) release, as the behavioral responses were blocked by infusion of a BDNF-neutralizing Ab into the medial prefrontal cortex (mPFC) or, in mice, with a knockin of a BDNF polymorphism that blocked activity-dependent BDNF release. NV-5138 administration also rapidly increased synapse number and function in the mPFC and reversed the synaptic deficits caused by chronic stress. Together, the results demonstrate that NV-5138 produces rapid synaptic and antidepressant behavioral responses via activation of the mTORC1 pathway and BDNF signaling, indicating that pharmacological modulation of sestrin may be an attractive approach for the development of rapid-acting antidepressants.

Authors

Taro Kato, Santosh Pothula, Rong-Jian Liu, Catharine H. Duman, Rosemarie Terwilliger, George P. Vlasuk, Eddine Saiah, Seung Hahm, Ronald S. Duman

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement