Recent reports suggest that cells in active cell cycle have an engraftment defect compared with quiescent cells. We used nonhuman primates to investigate this finding, which has direct implications for clinical transplantation and gene therapy applications. Transfer of rhesus CD34+ cells to culture in stem cell factor (SCF) on the CH-296 fibronectin fragment (FN) after 4 days of culture in stimulatory cytokines maintained cell viability but decreased cycling. Using retroviral marking with two different gene transfer vectors, we compared the engraftment potential of cytokine-stimulated cells versus those transferred to nonstimulatory conditions (SCF on FN alone) before reinfusion. In vivo competitive repopulation studies showed that the level of marking originating from the cells continued in culture for 2 days with SCF on FN following a 4-day stimulatory transduction was significantly higher than the level of marking coming from cells transduced for 4 days and reinfused without the 2-day culture under nonstimulatory conditions. We observed stable in vivo overall gene marking levels of up to 29%. This approach may allow more efficient engraftment of transduced or ex vivo expanded cells by avoiding active cell cycling at the time of reinfusion.
Masaaki Takatoku, Stephanie Sellers, Brian A. Agricola, Mark E. Metzger, Ikunoshin Kato, Robert E. Donahue, Cynthia E. Dunbar
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 281 | 37 |
59 | 10 | |
Figure | 244 | 4 |
Table | 49 | 0 |
Citation downloads | 80 | 0 |
Totals | 713 | 51 |
Total Views | 764 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.