Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Targeted disruption of the murine Na+/H+ exchanger isoform 2 gene causes reduced viability of gastric parietal cells and loss of net acid secretion.
P J Schultheis, … , M L Miller, G E Shull
P J Schultheis, … , M L Miller, G E Shull
Published March 15, 1998
Citation Information: J Clin Invest. 1998;101(6):1243-1253. https://doi.org/10.1172/JCI1249.
View: Text | PDF
Research Article Article has an altmetric score of 9

Targeted disruption of the murine Na+/H+ exchanger isoform 2 gene causes reduced viability of gastric parietal cells and loss of net acid secretion.

  • Text
  • PDF
Abstract

Multiple isoforms of the Na+/H+ exchanger (NHE) are expressed at high levels in gastric epithelium, but the physiological role of individual isoforms is unclear. To study the function of NHE2, which is expressed in mucous, zymogenic, and parietal cells, we prepared mice with a null mutation in the NHE2 gene. Homozygous null mutants exhibit no overt disease phenotype, but the cellular composition of the oxyntic mucosa of the gastric corpus is altered, with parietal and zymogenic cells reduced markedly in number. Net acid secretion in null mutants is reduced slightly relative to wild-type levels just before weaning and is abolished in adult animals. Although mature parietal cells are observed, and appear morphologically to be engaged in active acid secretion, many of the parietal cells are in various stages of degeneration. These results indicate that NHE2 is not required for acid secretion by the parietal cell, but is essential for its long-term viability. This suggests that the unique sensitivity of NHE2 to inhibition by extracellular H+, which would allow upregulation of its activity by the increased interstitial alkalinity that accompanies acid secretion, might enable this isoform to play a specialized role in maintaining the long-term viability of the parietal cell.

Authors

P J Schultheis, L L Clarke, P Meneton, M Harline, G P Boivin, G Stemmermann, J J Duffy, T Doetschman, M L Miller, G E Shull

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 242 23
PDF 61 23
Citation downloads 65 0
Totals 368 46
Total Views 414
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 10 patents
30 readers on Mendeley
See more details