Chronic alcohol consumption causes liver injury, inflammation, and fibrosis, thereby increasing morbidity and mortality. Paradoxically, modest drinking is believed to confer metabolic improvement, but the underlying mechanism remains elusive. Here, we have identified a hepatoprotective brain/brown adipose tissue (BAT)/liver axis. Alcohol consumption or direct alcohol administration into the brain stimulated hypothalamic neural circuits and sympathetic nerves innervating BAT and dramatically increased BAT uncoupling protein 1 (Ucp1) expression and activity in a BAT-sympathetic nerve-dependent manner. BAT and beige fat oxidized fatty acids to fuel Ucp1-mediated thermogenesis, thereby inhibiting lipid trafficking into the liver. BAT also secreted several adipokines, including adiponectin, which suppressed hepatocyte injury and death. Genetic deletion of Ucp1 profoundly augmented alcohol-induced liver steatosis, injury, inflammation, and fibrosis in male and female mice. Conversely, activation of BAT and beige fat through cold exposure suppressed alcoholic liver disease development. Our results unravel an unrecognized brain alcohol-sensing/sympathetic nerve/BAT/liver axis that counteracts liver steatosis and injury.
Hong Shen, Lin Jiang, Jiandie D. Lin, M. Bishr Omary, Liangyou Rui
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 964 | 482 |
169 | 123 | |
Figure | 420 | 11 |
Supplemental data | 72 | 12 |
Citation downloads | 69 | 0 |
Totals | 1,694 | 628 |
Total Views | 2,322 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.