The stroma of solid tumors can exclude or limit immune infiltration, or lead to the recruitment of tumor-promoting rather than tumor-attacking immune cells. This finding was reported by Jayaprakash et al. in this issue of the JCI, and it was particularly prominent in the hypoxic zones of tumors in the transgenic adenocarcinoma of the mouse prostate (TRAMP) cancer models. A current clinical goal of immune checkpoint blockade (ICB) is to extend its utility to more patients by converting immunologically “cold” tumors that do not provoke a strong immunological response to “hot” tumors that are invaded by swarms of T cells. When the underlying cause is hypoxia linked, the therapeutic combination of simultaneous targeting of hypoxia and immune checkpoints merits exploration in future clinical trials.
Paul R. Walker
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 219 | 24 |
80 | 12 | |
Figure | 58 | 2 |
Citation downloads | 47 | 0 |
Totals | 404 | 38 |
Total Views | 442 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.