X-linked dominant incontinentia pigmenti (IP) and X-linked recessive anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) are caused by loss-of-function and hypomorphic IKBKG (also known as NEMO) mutations, respectively. We describe a European mother with mild IP and a Japanese mother without IP, whose 3 boys with EDA-ID died from ID. We identify the same private variant in an intron of IKBKG, IVS4+866 C>T, which was inherited from and occurred de novo in the European mother and Japanese mother, respectively. This mutation creates a new splicing donor site, giving rise to a 44-nucleotide pseudoexon (PE) generating a frameshift. Its leakiness accounts for NF-κB activation being impaired but not abolished in the boys’ cells. However, aberrant splicing rates differ between cell types, with WT NEMO mRNA and protein levels ranging from barely detectable in leukocytes to residual amounts in induced pluripotent stem cell–derived (iPSC-derived) macrophages, and higher levels in fibroblasts and iPSC-derived neuronal precursor cells. Finally, SRSF6 binds to the PE, facilitating its inclusion. Moreover, SRSF6 knockdown or CLK inhibition restores WT NEMO expression and function in mutant cells. A recurrent deep intronic splicing mutation in IKBKG underlies a purely quantitative NEMO defect in males that is most severe in leukocytes and can be rescued by the inhibition of SRSF6 or CLK.
Bertrand Boisson, Yoshitaka Honda, Masahiko Ajiro, Jacinta Bustamante, Matthieu Bendavid, Andrew R. Gennery, Yuri Kawasaki, Jose Ichishima, Mitsujiro Osawa, Hiroshi Nihira, Takeshi Shiba, Takayuki Tanaka, Maya Chrabieh, Benedetta Bigio, Hong Hur, Yuval Itan, Yupu Liang, Satoshi Okada, Kazushi Izawa, Ryuta Nishikomori, Osamu Ohara, Toshio Heike, Laurent Abel, Anne Puel, Megumu K. Saito, Jean-Laurent Casanova, Masatoshi Hagiwara, Takahiro Yasumi
The CLK inhibitor TG003 suppresses IVS4+866 C>T–induced PE inclusion to restore the production of a functional NEMO protein.