Type I collagen provokes activation of hepatic stellate cells during liver injury through mechanisms that have been unclear. Here, we tested the role of the discoidin domain tyrosine kinase receptor 2 (DDR2), which signals in response to type I collagen, in this pathway. DDR2 mRNA and protein are induced in stellate cells activated by primary culture or in vivo during liver injury. The receptor becomes tyrosine phosphorylated in response to either endogenous or exogenous type I collagen, whereas its expression is downregulated during cellular quiescence induced by growth on Matrigel. We developed stellate cell lines stably overexpressing either wild-type DDR2, a constitutively active chimeric DDR2 receptor (Fc-DDR2), a truncated receptor expressing the extracellular domain, or a kinase-dead DDR2 Cells overexpressing DDR2 showed enhanced proliferation and invasion through Matrigel, activities that were directly related to increased expression of active matrix metalloproteinase 2 (MMP-2). These data show that DDR2 is induced during stellate cell activation and implicate the phosphorylated receptor as a mediator of MMP-2 release and growth stimulation in response to type I collagen. Moreover, type I collagen-dependent upregulation of DDR2 expression establishes a positive feedback loop in activated stellate cells, leading to further proliferation and enhanced invasive activity.
Elvira Olaso, Kazuo Ikeda, Francis J. Eng, Lieming Xu, Li-Hsien Wang, Hsin Chieh Lin, Scott L. Friedman
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 1,219 | 98 |
139 | 49 | |
Figure | 461 | 19 |
Citation downloads | 46 | 0 |
Totals | 1,865 | 166 |
Total Views | 2,031 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.