Under normal conditions, there is a paucity of neutrophils within the intestinal mucosa; however, these innate immune cells rapidly infiltrate the mucosa in response to infection and are critical for pathogen control. Unfortunately, these cells can cause extensive damage to the intestine if the initial inflammatory influx is not resolved. Factors that promote resolution of inflammation are of great interest, as they have therapeutic potential for limiting uncontrolled inflammatory damage. In this issue of the JCI, Szabady et al. demonstrate that the multidrug resistance transporter P-glycoprotein (P-gp) secretes endocannabinoids into the intestinal lumen that counteract the proinflammatory actions of the eicosanoid hepoxilin A3, which is secreted into the lumen by the efflux pump MRP2 and serves as a potent neutrophil chemoattractant. Moreover, the antiinflammatory actions of P-gp–secreted endocannabinoids were mediated by peripheral cannabinoid receptor CB2 on neutrophils. Together, the results of this study identify an important mechanism by which endogenous endocannabinoids facilitate the resolution of inflammation; this mechanism has potential to be therapeutically exploited.
Andrew S. Neish
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 370 | 19 |
88 | 22 | |
Citation downloads | 64 | 0 |
Totals | 522 | 41 |
Total Views | 563 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.