Persistent, unresolved inflammation in the liver represents a key trigger for hepatic injury and fibrosis in various liver diseases and is controlled by classically activated proinflammatory macrophages, while restorative macrophages of the liver are capable of reversing inflammation once the injury trigger ceases. Here we exhibit neutrophils as key contributors to resolving the inflammatory response in the liver using two models of liver inflammation resolution. Using two models of liver inflammatory resolution, we found that mice undergoing neutrophil depletion during the resolution phase exhibited unresolved hepatic inflammation, activation of the fibrogenic machinery, and early fibrosis. These findings were associated with an impairment of the phenotypic switch of proinflammatory macrophages into a restorative stage after removal of the cause of injury and an increased NLRP3/miR-223 ratio. Mice with a deletion of the granulocyte-specific miR-223 gene showed a similarly impaired resolution profile that could be reversed by replacing miR-223 levels using a miR-223 3p mimic or by infusion of neutrophils from wild-type animals. Collectively, our findings reveal hepatic neutrophils as resolving effector cells that induce proinflammatory macrophages into a restorative phenotype, potentially via miR-223.
Carolina Jimenez Calvente, Masahiko Tameda, Casey D. Johnson, Hana del Pilar, Yun Chin Lin, Nektaria Adronikou, Xavier De Mollerat Du Jeu, Cristina Llorente, Josh Boyer, Ariel E. Feldstein
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 1,068 | 449 |
215 | 214 | |
Figure | 569 | 20 |
Supplemental data | 53 | 11 |
Citation downloads | 77 | 0 |
Totals | 1,982 | 694 |
Total Views | 2,676 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.