The pathogenesis of ischemic diseases remains unclear. Here we demonstrate the induction of microRNA-668 (miR-668) in ischemic acute kidney injury (AKI) in human patients, mice, and renal tubular cells. The induction was HIF-1 dependent, as HIF-1 deficiency in cells and kidney proximal tubules attenuated miR-668 expression. We further identified a functional HIF-1 binding site in the miR-668 gene promoter. Anti–miR-668 increased apoptosis in renal tubular cells and enhanced ischemic AKI in mice, whereas miR-668 mimic was protective. Mechanistically, anti–miR-668 induced mitochondrial fragmentation, whereas miR-668 blocked mitochondrial fragmentation during hypoxia. We analyzed miR-668 target genes through immunoprecipitation of microRNA-induced silencing complexes followed by RNA deep sequencing and identified 124 protein-coding genes as likely targets of miR-668. Among these genes, only mitochondrial protein 18 kDa (MTP18) has been implicated in mitochondrial dynamics. In renal cells and mouse kidneys, miR-668 mimic suppressed MTP18, whereas anti–miR-668 increased MTP18 expression. Luciferase microRNA target reporter assay further verified MTP18 as a direct target of miR-668. In renal tubular cells, knockdown of MTP18 suppressed mitochondrial fragmentation and apoptosis. Together, the results suggest that miR-668 is induced via HIF-1 in ischemic AKI and that, upon induction, miR-668 represses MTP18 to preserve mitochondrial dynamics for renal tubular cell survival and kidney protection.
Qingqing Wei, Haipeng Sun, Shuwei Song, Yong Liu, Pengyuan Liu, Man Jiang Livingston, Jianwen Wang, Mingyu Liang, Qing-Sheng Mi, Yuqing Huo, Norris Stanley Nahman, Changlin Mei, Zheng Dong
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 987 | 162 |
143 | 116 | |
Figure | 412 | 16 |
Table | 40 | 0 |
Supplemental data | 55 | 4 |
Citation downloads | 71 | 0 |
Totals | 1,708 | 298 |
Total Views | 2,006 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.