Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 12

See more details

Referenced in 10 patents
Referenced in 1 clinical guideline sources
43 readers on Mendeley
  • Article usage
  • Citations to this article (188)

Advertisement

Research Article Free access | 10.1172/JCI119769

Angiotensin II stimulates proliferation of normal early erythroid progenitors.

M Mrug, T Stopka, B A Julian, J F Prchal, and J T Prchal

Division of Hematology/Oncology, University of Alabama, Birmingham 35294, USA.

Find articles by Mrug, M. in: PubMed | Google Scholar

Division of Hematology/Oncology, University of Alabama, Birmingham 35294, USA.

Find articles by Stopka, T. in: PubMed | Google Scholar

Division of Hematology/Oncology, University of Alabama, Birmingham 35294, USA.

Find articles by Julian, B. in: PubMed | Google Scholar

Division of Hematology/Oncology, University of Alabama, Birmingham 35294, USA.

Find articles by Prchal, J. in: PubMed | Google Scholar

Division of Hematology/Oncology, University of Alabama, Birmingham 35294, USA.

Find articles by Prchal, J. in: PubMed | Google Scholar

Published November 1, 1997 - More info

Published in Volume 100, Issue 9 on November 1, 1997
J Clin Invest. 1997;100(9):2310–2314. https://doi.org/10.1172/JCI119769.
© 1997 The American Society for Clinical Investigation
Published November 1, 1997 - Version history
View PDF
Abstract

Angiotensin II exerts a mitogenic effect in several in vitro models, but a direct effect on erythroid progenitors has not been documented. Angiotensin-converting enzyme inhibitors and losartan, an angiotensin II type 1 receptor (AT1) antagonist, ameliorate posttransplant erythrocytosis, without altering serum erythropoietin levels. We studied erythroid differentiation and the effect of angiotensin II on proliferation of erythroid progenitors by culturing CD34+ hematopoietic progenitor cells in liquid serum-free medium favoring growth of erythroid precursors. Aliquots of cells were collected every third day, and were used for RNA preparation. AT1 mRNA was detected after 6 d. In these same samples, erythroid-specific mRNA (erythropoietin receptor) was also detected. AT1 protein was detected in 7-d-old burst-forming units-erythroid colonies by Western blotting. The CD34+ cell liquid cultures were used to incubate erythroid precursors with angiotensin II from days 6-9. After incubation, cells were transferred to semisolid medium and cultured with erythropoietin. Angiotensin II increased proliferation of early erythroid progenitors, defined as increased numbers of burst-forming units-erythroid colonies. Losartan completely abolished this stimulatory effect of angiotensin II. Moreover, we observed increased numbers of erythroid progenitors in the peripheral blood of posttransplant erythrocytosis patients. Thus, activation of AT1 with angiotensin II enhances erythropoietin-stimulated erythroid proliferation in vitro. A putative defect in the angiotensin II/AT1 pathway may contribute to the pathogenesis of posttransplant erythrocytosis.

Version history
  • Version 1 (November 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 12
  • Article usage
  • Citations to this article (188)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 10 patents
Referenced in 1 clinical guideline sources
43 readers on Mendeley
See more details